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Abstract. Centromeres are the differentiated chro- 
mosomal domains that specify the mitotic behavior of 
chromosomes. To examine the molecular basis for the 
specification of eentromeric chromatin, we have 
cloned a human eDNA that encodes the 17-kD 
historic-like centromere antigen, CENP-A. Two do- 
mains are evident in the 140 aa CENP-A polypeptide: 
a unique NH2-terminal domain and a 93-amino acid 
COOH-terminal domain that shares 62% identity with 

nucleosomal core protein, histone H3. An epitope 
tagged derivative of CENP-A was faithfully targeted to 
centromeres when expressed in a variety of animal 
cells and this targeting activity was shown to reside in 
the histone-like COOH-terminal domain of CENP-A. 
These data clearly indicate that the assembly of cen- 
tromeres is driven, at least in part, by the incor- 
poration of a novel core histone into centromeric 
chromatin. 

C 
ENTROMERES are the chromosomal loci that specify 
the segregation behavior of chromosomes during 
mitosis and meiosis (Schulman and Bloom, 1991). In 

mammals, centromeres are visible as the primary constric- 
tion of mitotic chromosomes and contain densely packed 
heterochromatic satellite DNA. The centromere appears to 
direct the assembly of the kinetochore, a differentiated tri- 
laminar plaque present at the surface of the eentromere that 
interacts directly with microtubules of the mitotic spindle 
apparatus (Brinkley and Stubblefield, 1966; Ris and Witt, 
1981). Analysis of centromeres of yeast chromosomes reveal 
that centromere function is specified by cis-acting DNA se- 
quences that interact with sequence-specific DNA binding 
proteins to assemble a microtubule-dependent motor com- 
plex on the chromosome (Middleton and Carbon, 1994; Hy- 
man et ai., 1992; Lechner and Carbon, 1991; Clarke and 
Carbon, 1980). In addition to acting as a site for microtubule 
binding and force generation, the centromere mediates at- 
tachment of the sister chromatids throughout mitosis until 
their separation at the metaphase-anaphase transition. 

The functions of the centromere are associated with a 
chromatin structure that is differentiated from that of the 
chromosome arms. In animal cells, this is observed as the 
densely packed constitutive heterochromatin of the primary 
constriction. In budding yeast it has been possible to exam- 
ine centromeric chromatin at the molecular level, where the 
ca 125-bp centromere DNA sequences are folded within a 
150-200-bp nuclease-resistant "particle" flanked on either 
side by precisely phased nucleosomes (Bloom and Carbon, 
1992; Funk et al., 1989). Experiments using transcription 
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to disrupt the unique chromatin configuration of the centro- 
mere domain have shown that this structure is essential for 
proper segregation of chromosomes during mitosis (Hill and 
Bloom, 1989). Similarly, in the fission yeast Schizosac- 
charomyces pombe, the essential central core DNA se- 
quences of the centromere are packaged in a region with a 
distinctive nonuniform and highly varied nucleosome distri- 
bution, as assayed by nuclease digestion techniques (Polizzi 
and Clarke, 1991). This modified chromatin is only observed 
in the context of functional centromeres: the same sequences 
are assembled into normal chromatin when present on a 
minichromosome in Saccharomyces cerevisiae. These data 
indicate that altered chromatin structure is intimately related 
to the function of centromeres. 

The discovery of centromere-specific autoantibodies in 
patients with limited systemic sclerosis (CREST syndrome) 
and characterization of the antigens recognized by these sera 
have provided tools for analysis of centromere structure and 
function in mammalian cells (Bernat et ai., 1990; Simerly 
et al., 1990; Earnshaw and Rothfield, 1985; Brenner et al., 
1981; Moroi et al., 1980). Three major antigens, centromere 
proteins (CENP)t-A, -B, and -C have been identified using 
these sera. CENP-C is a 140-kD polypeptide that is a compo- 
nent of the inner plate of the kinetochore and thus lies at the 
interface between the chromosome and the kinetochore 
(Saitoh et al., 1992). While the function of CENP-C is not 
clear, antibody microinjection experiments have shown that 
it is required for normal kinetochore assembly (Tomkiel et 
al., 1994). CENP-B was the first centromere protein to be 
cloned (Earnshaw et al., 1987) and has been shown to be a 
sequence-specific DNA binding protein that is localized to 

1. Abbreviations used in this paper: CENP, centromere protein; RT-PCR, 
reverse transcript PCR; SF, serum-free; TX, Triton X-100. 
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the heterochromatic interior of the centromere, underlying 
the kinetochore (Masumoto et al., 1989; Cooke et al., 
1990). CENP-B binds to a subset of the alphoid satellite 
DNA that comprises the major DNA component of human 
centromeres and may play a role in the higher order folding 
of alphoid chromatin through self-assembly (Yoda et al., 
1992). 

The biochemical studies of Palmer and colleagues point to 
a more direct role for CENP-A in establishing a differen- 
tiated chromatin structure at the centromere (Palmer and 
Margolis, 1985; Palmer et al., 1987, 1991). These workers 
demonstrated that CENP-A is present on nueleosome-like 
structures following micrococcal nuclease digestion of 
nuclei and that it co-purifies with nucleosome core particles 
under stringent isolation conditions (Palmer et al., 1987; 
Palmer and Margolis, 1985). Direct purification of CENP-A 
from bovine sperm nuclei led to partial amino acid sequence 
analysis which showed that CENP-A shared homology with 
the core nucleosomal protein histone H3 (Palmer et al., 
1991). On the basis of these biochemical properties and 
amino acid sequence, these authors proposed that CENP-A 
is a centromere-specific histone. 

In this work, we isolated a partial eDNA for bovine 
CENP-A using reverse transcript PCR (RT-PCR) and have 
used this as a probe to isolate a full-length eDNA for human 
CENP-A. Sequence analysis reveals that CENP-A is indeed 
a divergent histone H3-related protein. It possesses two do- 
mains defined by homology with histone H3: a divergent 
NH2-tenninal domain and a homologous COOH-terminal 
domain that shares 60% amino acid identity with histone 
H3. We constructed an epitope-tagged derivative of human 
CENP-A and showed that it is faithfully targeted to centro- 
meres when expressed in mammalian cells. This expression 
system was used to examine centromere-targeting signals 
within CENP-A. Surprisingly, the histone-like domain 
specified the centromeric localization of CENP-A rather 
than its unique NH2-terminus. These experiments clearly 
establish that the centromere is differentiated from the chro- 
mosome arms at the most fundamental level of chromatin 
structure and, further, that key molecular recognition events 
required for centromere assembly occur at the level of the 
nucleosome. 

Materials and Methods 

Cell Culture 
HeLa cells were maintained in DME supplemented with 10% fetal bovine 
serum. Indian muntjac fihroblasts (CCL-157; American Type Culture Col- 
lection, Rockville, MD) were grown in Ham's F12 medium with 10% fetal 
bovine serum. Both cell lines were grown at 37°C in a 5% CO2 at- 
mosphere. For immanofluorescence cells were grown directly on sterile 
acid-washed 12-ram diam cover slips in a 24-well dish. Materials for cell 
culture were obtained from GIBCO BRL (Gaithersburg, MD). 

Cloning 
Routine nucleic acid techniques were performed essentially as described in 
Ausubel et al. (1990). For isolation of bovine CENP-A, eDNA degenerate 
oligonucleotides were synthesized based on reverse translation of bovine 
CENP-A peptide sequences reported by Palmer et al. (1991). The 5' oligonu- 
cleotide, GGAATTCCCARAARACNACNCA, was derived from peptide 
CI corresponding to amino acid Sequence QKTTH, and the 3' oligonucleo- 
tide, TTYCCNAARGAYGTNCAGAATTCC (R = A or G, Y = C or T, N 
= A, G, C, or T), derived from the sequence FPKDVQ of peptide 
C10/D5/C5. Total RNA from MDBK cells (a generous gift of Dr. Ed Chart, 

The Scripps Research Institute) was reverse transcribed with random 
primers using a commercial eDNA synthesis kit (Red Module, Invitrogen, 
San Diego, CA). PCR reactions contained eDNA from 1 /.tg of RNA and 
oligonucleotide primers at a concentration of ,'~0.5 #M times the degener- 
acy of each primer (64-fold for C1 primer and 128-fold for C10/D5/C5 
prime0 in a total volume of 100 #l with 2.5 U of Taq polymerase (Promega 
Biotec, Madison, WI). Samples were amplified in a thermal cycler 
(Ericomp, San Diego, CA) according to the following program: 2 rain at 
99°C (2 rain × 99°C) for initial denaturation; two cycles with 30 s x 95°C 
denaturation, 60 s × 37°C annealing, 90 s × 72°C extension; 28 cycles 
with 30 s x 95°C, 60 s x 55°C, 90 s × 72°C; 10 min at 72°C. Products 
were analyzed by electrophoresis on 2 % agarose-TEA and the predominant 
product at the expected size was isolated, purified using Qiaex resin (Qia- 
gen, Chatsworth, CA), digested with EcoRI (New England Biolabs, 
Beverly, MA) and cloned into pBluescript (Stratagene Corp., La Jolla, CA). 
Sequence analysis of the bovine eDNA clone (bCNPA) was performed by 
the dideoxy method using Sequenase (United States Biochemical Corp., 
Cleveland, OH) with 3SS-labeled thio-dATP from Amersham Corp. (Ar- 
lington Heights, IL). DNA sequences were analyzed using the GCG soft- 
ware suite (Devereaux et al., 1984). 

bCNPA was labeled with tx-[32P]dCTP or dATP (Amersham Corp.) 
using the random primer method (Feinberg and Vogelstein, 1983) and used 
to screen a human endothelial cell eDNA library constructed in ), gtll (a 
gift of Dr. Evan Sadler, Washington University, St. Louis, MO) resulting 
in the isolation of three eDNA clones. One of these was used to screen a 
human T-lymphoblastoma (MOLT-4) eDNA library in X gtl 1 (a gift of Dr. 
Ed Chan), resulting in the isolation of the full length clone, eDNA 211, de- 
scribed here. eDNA 211 was subcloned into the EcoRI site of pBluescript 
and DNA sequence analysis was performed as described above. 

Expression Constructs 
For expression, isolated eDNA 211 was made flush by treatment with 
Klenow fragment and ligated with peDL SR~296 (Takabe et al., 1987) that 
had been digested with XhoI and filled with Klenow. To construct an 
epitope-tagged derivative of CENP-A, a bottom strand primer was prepared 
that contained the sequence of 10 codons encoding the influenza bemagglu- 
finin epitope HA1 (Niman ct at., 1983) following the terminal Glyt40 
codon of CENP-A (5' CAC~TGCAGGAGCTCGTTAAGTCAGC- 
TAGCGTAGTCCGGCACGTCGTACGGGTACCCGAGTCCCTCCT- 
CAAGGC). A top strand primer, 5' GC~CCCTCCTTAGG, was also pre- 
pared and the two primers were used to amplify a fragment using eDNA 
211 as a template. The P e R  product was digested with Sill and SaeI and 
subcloned into eDNA 211, replacing the wild type SfiI-Sacl segment of the 
eDNA, to form plasmid pCA-HA1. The EcoRI insert of pCA-HA1 was sub- 
cloned into pcDL SRtx 296 as described above for the wild-type eDNA to 
generate plasmid pcDL CA-HAL An epitopc-tagged version of mouse his- 
tone H3.2 was constructed in an analogous manner in plasmid pMH3.2, a 
cloned mouse histone H3 gene kindly provided by Dr. William Marzluff 
(University of North Carolina, Chapel Hill, NC) (Taylor et at., 1986). To 
construct pcDL H3-HA1, the historic H3-HAI coding region was excised 
by digestion with NcoI, which cut at the initiator ATG codon, and Kpnl, 
the latter site comprising part of the epitope sequence. A second fragment 
was prepared from eDNA 211 by PCR, spanning the Y-untranslated region 
of the eDNA and introducing a NcoI site at the ATG initiator codon compat- 
ible with the NcoI site of MH3.2. This fragment was digested with Such 
and NcoI. A vector was prepared from peDL CA-HA1 by digestion with 
SacH and KpnI and the three fragments were ligated together to form pcDL 
H3HA1. Chimeric construct pcDL CA/H3-HA1 was constructed using a 
combination of PCR and restriction fragments to join CENP-A residues 
1-51 with histone H3 residues 52-135, using a BstYI site in histone H3. 
Similarly, pcDL H3/CA-HA1 joined histone H3 residues 1-52 with CENP-A 
residues 53-140, using a HindIlI site in CENP-A. All of these constructs 
maintained the 5'- and 3'-untranslated regions of human CENP-A. A CENP-B 
expression plasmid was prepared by cloning the L95-kb human genomic 
SmaI fragment of CENP-B into the XhoI site of pcDL-SRtx296 after treat- 
ment with T7 DNA polymerase to fill in the ends. 

Transfection 
For analysis by immunofluorescence 2-5 x 104 cells were plated onto 12- 
nun coverslips in 24-well dishes the night prior to transfection. DNA was 
introduced using cationic-lipid mediated transfection (Felgner et at., 1987) 
with Lipofectamine reagent (GIBCO BRL). DNA (250 rig) was diluted in 
25 ~l of serum-free DME (DME-SF) and combined with 25/zl of DME-SF 
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containing 2,5 #1 (5 #g) of Lipofectamine. DNA-lipid complexes were al- 
lowed to form at room temperature for 30-60 rain and then diluted with 
200 #! of DME-SE Cells were washed once with DME-SF and DNA-lipid 
complexes were applied in a total volume of 250/zl. Plates were returned 
to the incubator for 5-6 h and then supplemented with 500/~1 of complete 
DME. The following morning the medium was replaced with fresh DME 
and cover slips were processed 24 h later. For analysis of transfected cells 
by immunoblot, transfections were performed in 10-cm dishes using 5 #g 
of DNA and 100 pg of Lipofectamine in 5 ml of DME-SE Cells were har- 
vested 48 h after application of DNA by lysis in 250/d of SDS-PAGE sample 
buffer. 

Immunofluorescence Microscopy 

Transfected cells on 12-mm cover slips were washed in 37°C PBS and fixed 
for 10 min with 4 % formaldehyde in PBS prepared from paraformaldehyde. 
Cover slips were washed once in PBS and twice in PBS with 0.1% Triton-X 
100 (PBS-TX) for 3 min and then blocked with 1% BSA (Boehringer- 
Mannheim Biochemicals, Indianapolis, IN) in PBS-TX for 15 rain, all at 
room temperature. Primary antibodies were diluted in PBS-TX/I%BSA. 
Antibodies used were: monoclonal antibody 12CA5 against the HA-1 epi- 
tope (a gift of Dr. Ian Wilson, The Scripps Research Institute, La Jolla, CA) 
at a concentration of 10 #g/ml, monoclonal antibody rnACA-1 against hu- 
man CENP-B (Earnshaw et al., 1987) at a concentration of 20 #g/ml and 
human CREST autoantiserum hACA-M (Sullivan and Glass, 1991) at a dilu- 
tion of 1:2,000. In control experiments, specificity of antibodies was verified 
individually; for analysis of transfected cells primary antibodies were com- 
bined in a single incubation for 30 rain at 37°C. Following incubation, pri- 
mary antibody solution was removed and cover slips were washed four times 
with PBS-TX for 4-min each. Secondary antibodies (Southern Biotechnolo- 
gies, Inc., Birmingham, AL) were fluorescein-conjugated anti-mouse IgG- 
2b at 1:25 dilution to detect antibody 12CA5 and either rhodamine- 
conjugated sheep anti-human IgG at 1:200 dilution (for autoantiserum 
hACA-M) or ami-mouse IgG-I (for mAC_A-I). Secondary antibodies were 
diluted in PBS-TX/I% BSA and incubated at 37°C for 30 min. Cover slips 
were then washed once in PBS-TX and three times with PBS for 4-min each 
and then rinsed briefly in distilled water and air dried. Slips were then 
mounted on slides with an anti-fade mounting medium (Molecular Probes, 
Eugene, OR) and sealed with a solution of 50% clear nail polish in acetone. 
Microscopy was performed using a MRC-600 confocal laser scanning in- 
strument (Bio Pad Laboratories, Cambridge, MA) fitted to a Zeiss Axiovert 
epifluorescence microscope using the 63x (planapo) objective. Images 
were collected from a single focal plane (ca. 0.4/~m) using 30 scans aver- 
aged by the Kalman method with the Bio Rad COMOS software package, 
using the minimal slit opening and maximum photomultiplier gain settings 
for the laser. Differential phase contrast images were collected after fluores- 
cence images. Images were recorded onto Ektar ASA 25 film using a film 
recorder. For standard epifluorescence microscopy, a Zeiss Axiophot mi- 
croscope with 100x planapo objective lens was used and images were 
recorded using Ektachrome ASA 400 or T-MAX ASA 400 film. 

Immunoblots 

Proteins were resolved by electrophoresis on 15% SDS-PAGE gels 
(Laemmli, 1970) and transferred to nitrocellulose (BA83; Schleicher & 
Schuell, Keene, NH) in an electroblotting apparatus (Bio pad Laboratories) 
at 70 V for 2.5 h. Filters were blocked in 10 mM Tris-HC1, pH 8, 150 mM 
NaCI, 0.1% Tween-20 (TBST) with 5% nonfat dried milk for 1 h at room 
temperature or overnight at 4°C. Filters were washed once in TBST and then 
incubated with primary antibodies diluted in 1% BSA in TBST for 1 h at 
room temperature. Antibodies were 12CA5 used at 1 /zg/ml or hACA-M 
used at 1:5,000. Filters were washed five times for 5-rain each in TBST and 
then incubated with horseradish peroxidase-coupled secondary antibodies 
at a dilution of 1:5,000-1:20,000 in 1% BSA-TBST for 1 h at room tempera- 
ture. Filters were washed five times in TBST as for primary antibody incu- 
bations and processed for chemiluminescent detection using an ECL kit 
(Amersham Corp.) according to the manufacturer's instructions. 

Resu l t s  

Isolation of  cDNA Clones Encoding CENP-A 

D e g e n e r a t e  o l igonuc leo t ide  p r i m e r s  for  ampl i f i ca t ion  o f  

A 

B 

GAATTCCAGAAGACGACAC~CTGCTGTTAAGAAAGAGCCCCTTCTGCCGCCTGGCAAGA 60 
Q K T T ~ L L L R K S P F C R L A ~ 18 

C9a 
GAAATATGTGTTCAATT CACT CGTGGTGTGGACTT CAATTC43 CAAG CCCAGG C C CTGTTG 120 
E I C V 0 F T R G V D F N W Q A Q A L L 38 

Cga 

GCCC TACAAGAGGCC-G CAGAAGCATT T C TAGTTCATCTCT T TGAGGATGCCTATC TCCTC 180 
A L Q E A A E A F L V H L F E D A Y L L 58 

E2 
TCCTTACACGCCGGCCGCGTCACGCTC~TCCCCAAGGACGTCCAGAATT~ 230 
S L H A G R V T L IF | P  K D V Q 73 

C10/D5/C5 

G~TTC~CGGACTT~GCC~G~CC~CTCATGTGA~CTCGCGG~GCGTTCTCT 60 
G~CTCCCCAG~GCCAGCCTTTCGCTCCC~ACCCGGCAGCCCGAGCAGGAGCCGTGGG 120 
ACCGGGCGCCAGCACCCT~GCGGCGTGTCATGGGCCCGCGCCGCCGGAGCCGAAAGCCC 180 

M G P R R R S R K P  10 

GAGGCCCCGA~A~CGCAGCCCGAGCCCGACCCCGACCCCC~CCCCTCCC~CGGGGC 240 
E A P R R R S P S P T P T P G P S R R G  30 

CCCTCCTTA~CGCTTCCTCCCATCAACACAGTCGGCGGAGAC~GGTTGGCTAAAGGAG 300 
P S L G A S S H Q H S R R R Q G W L K E  50 

ATCCGA~GCTTCAG~GAG~CA~CCTCTTGAT~GG~GCTGCCCTTCAGCCGCCTG 360 
I R K L Q K S T H L L I R K L P F S R L  70 

GC~GAGI~TATGTGTTA/~TTCACTCGT~TGTGGACTTC~TTGGC~GCCCAGGCC 420 
A R E I C V K F T R G V D F N W Q A Q A  90 

CTATTGGCCCTAC~GAGGCAGCAG~GCATTT~AGTTCATCTCTTTGAGGACGCCTAT 480 
L L A L Q E A A E A F L V H L F E D A Y  llO 

CTCCTCACCTTACATGCAGGCCGAGTTACTCTCTTCCCAAAGGATGTGC~CCC~ 540 
L L T L H A G R V T L F P K D V Q L A R  130 

AGGATCCGG~CCTTGAGGAGGGACTCGGCTGAGCTCCTGCACCCAGTG~TCTGTCAGT 600 
R I R G L E E G L G *  140 

CTTTCCTGCT~GCCAGGGG~ATGATACCGG~ACTCTCCAG~CCATGACTAGATC~ 660 
ATGGATT~GCGATGCTGTCTGGACTTTGCTGTCT~G~CAGTATGTGTGTGTTGCTTT 720 
AAATATTTTT~TTTTT~GAG~GGAGAAGACTGCATGACTTTC~GT~CAGAGGT 780 
~TATATGAGAC~TC~CCGTTCCAAA~CCTGAAAAT~T~TCAGATAAAGAGAC 840 
TCCAAGGTTGACTTTAGTTTGTGAG~A~TGTGACTAT~GA~ATTTTGAAAA~T 900 
CAGATTTGCTGTGGTA~AGA~GGTTATGTAC'FTATTATTTTAGCTC~T~GT~ 960 
TA~TACATTTTTTACCATATGTACAT~GTA~T~A~ACACAT~GGGAAAAAAT 1020 
~GACCAC~TGAGCAGTTGC~GG~GGGCAT~CCAT~TATAGACCTCTGCCC 1080 
~CAGAGTAGC~CAC~TTAGT~G~T~TGT~GAGT~ACTGTGC ~GTCAA 1140 
CG~TG~TAGC T T ~CAGAAACTT~T TGGGGATC~TAGA2J~ACC TGT~GC T ~GAT 1200 
GTT~TTA~ T~AGTA~TTCCTG TCA~TC~TT~GAAATT~CTT~AG~ 1260 
TTT~TT~ACT C~G TA~T ~TAG~GATGTAT ~T~CAGTTCAG~TTAAAG 1320 
TACATTTTCGATGCTTTTATG~TATT~TAGTTTCTT~TAGAGAGAT~TAAAAAT 1380 
C A A A A T A T T T ~ T ~ G G ~ C  1419 

Figure L Nucleotide and encoded amino acid sequence of mam- 
malian CENP-A clones. (A) The sequence of the bovine CENP-A 
RT-PCR product is shown with the corresponding amino acid se- 
quence below. Primer derived sequences at the 5' and 3' ends of the 
cDNA fragment are boxed. Amino acid sequences corresponding 
to peptide sequences of Palmer et al. (1991) are underlined, with 
the identity of each peptide indicated below. (B) Sequence of hu- 
man CENP-A cDNA 211. cDNA 211 was the longest of eight 
human cDNAs isolated by screening libraries from MOLT4 and hu- 
man endothelial cells as described in Materials and Methods. The 
complete nucleotide sequence is shown with the amino acid se- 
quence of the open reading frame shown below. The translational 
start indicated is the sole in-frame ATG codon in the reading frame 
and initiates an open reading frame of 140 codons. A consensus 
polyadenylation signal sequence found at nucleotide 1372 is under- 
lined. Recognition sites for restriction enzyme EcoRI, introduced 
as linkers during cDNA synthesis are shown in italics. These se- 
quence data are available from EMBL/G-enBank/DDBJ under ac- 
cession numbers U14518 (human) and U14519 (bovine). 

C E N P - A  were  de s igned  f rom pep t ide  sequences  r epo r t ed  for  
b o v i n e  C E N P - A  ( P a l m e r  et  al . ,  1991). c D N A  was p r epa red  
f r o m  to ta l  bov ine  R N A ,  de r ived  f r o m  cu l tu red  M D B K  cells,  
and  used  as t empla t e  for  P C R ,  resu l t ing  in the  ampl i f i ca t ion  
o f  a 2 3 0 - b p  c D N A  f r a g m e n t  w h i c h  was s u b c l o n e d  and  sub-  
j e c t e d  to D N A  sequence  analys is  (Fig. 1 A). T h e  c D N A  
spans  73 codons  inc lud ing  five f lanking  codons  at  e ach  end  
tha t  a re  de r ived  f rom the  p r imers .  W i t h i n  the  ampl i f i ed  r e -  
g ion  th ree  s egmen t s  m a t c h  pept ide  sequences  r epo r t ed  by 
P a l m e r  et  al.  (1991), d i f fer ing on ly  in  pos i t ions  a s s igned  am-  
b iguous ly  in tha t  work  (Fig. 1 A, italics). We conc lude  that  
the  i so la ted  P C R  p r o d u c t  c o r r e s p o n d s  to  the  g e n e  encod ing  
b o v i n e  C E N P - A  as ident i f ied  by P a l m e r  and  co-workers  
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Figure 2. Alignment of 
CENP-A sequences with his- 
tone H3. The amino acid se- 
quences encoded by human 
CENP-A was aligned with the 
contiguous sequence assem- 
bled for bovine CENP-A and 
with human histone H3 
(SwissProt H31 HUMAN, 
P16106) using the GAP pro- 
gram of the University of Wis- 

consin Genetics Computer Group software (Milwaukee, WI). Residues identical to human CENP-A are highlighted (black); a short motif 
shared between CENP-A and histone H3 in the NH2 terminus is highlighted (grey). Note the presence of a two amino acid insertion in 
CENP-A relative to histone H3 following residue 79. 

(1991). Two additional segments of peptide sequence flank 
the region amplified by PCR, allowing a contiguous se- 
quence of 93 amino acid residues to be assembled for bovine 
CENP-A (Fig. 2). 

The bovine RT-PCR product was used to screen human 
cDNA libraries, resulting in the isolation of a 1,419-bp hu- 
man cDNA, designated cDNA 211 (Fig. 1 B). The open 
reading frame of cDNA 211, identified by homology with bo- 
vine CENP-A, contains a single in-frame methionine and 
spans 140 codons, predicting a protein of 15,990 D. Compar- 
ison of the predicted human protein sequence with the con- 
tiguous 93-residue segment of bovine CENP-A compiled 
from PCR and peptide sequences reveals 90.1% identity 
(94.5 % similarity) between the two proteins in this segment 
(Fig. 2). 

CENP-A Is a Histone H3 Homologue 

The mammalian CENP-A sequences share significant ho- 
mology with histone H3 (Fig. 2) as predicted from the partial 
sequence data of Palmer et al. (1991). This homology is re- 
stricted to the COOH-terminal portion of histone H3, 
residues 48-I35. In this region the CENP-A sequences share 
an average of 60% identity and about 75% similarity with 
human histone H3. This region corresponds to the element 
of histone H3 that is essential for viability in yeast (Mann 
and Grunstein, 1992; Morgan et al., 1991) and to the or- 
dered "histone fold" domain revealed by x-ray crystallo- 
graphic analysis of the histone octamer (Arents et al., 1991). 
Thus the structure of CENP-A is compatible with a role as 
a component of a modified nucleosome or nucleosome-like 
structure in which it replaces one or both copies of conven- 
tional histone H3 in the (H3-H4)2 tetrameric core of the nu- 
cleosome particle, a hypothesis consistent with the known 
biochemical properties of CENP-A (Palmer et al., 1987). 

In contrast to the homology observed in the histone fold 
domain, the NH2 terminus of human CENP-A shares essen- 
tially no sequence identity with the corresponding region of 
histone H3. In addition, a search of the comprehensive 
amino acid sequence database using the NCBI BLAST 
server (Altschul et ai., 1990) failed to reveal significant se- 
quence similarity between the NH2 terminus of CENP-A 
and any other known proteins. The NH2 terminal domain of 
human CENP-A shares the basic character of the histone H3 
NH: terminus, but is skewed toward arginine (12 Arg, 1 
Lys) while histone H3 is roughly balanced between Arg (6) 
and Lys (8). Four copies of the dipeptide (Ser/Thr)-Pro, 

residues 17-24, are present in the NH2 terminus and could 
represent substrates for phosphorylation (Nigg, 1993). 

Taken together these data indicate that CENP-A, like his- 
tone H3, is a two domain protein that possesses a histone fold 
domain with significant similarity to histone H3 and a diver- 
gent basic NH2 terminus. 

Expression of  cDNA 211 Demonstrates That It 
Encodes Bona Fide CENP-A 

CENP-A was originally identified as a 17-kD autoantigen 
that reacts specifically with anticentromere autoantibodies 
present in patients with limited system sclerosis or CREST 
syndrome (Earnshaw and Rothfield, 1985). To verify that 
cDNA 211 encodes bona fide CENP-A, we directly analyzed 
the properties of the gene product by expression in roam- 

Figure 3. The polypeptide en- 
coded by human CENP-A 
cDNA 211 reacts with human 
anti-centromere autoantibod- 
ies. A dish (10 cm) of In- 
dian muntjac cells at 70% 
confluence were transfected 
with 5/zg of pcDL 211 using 
cationic liposomes and har- 
vested by lysis in SDS-PAGE 
sample buffer 48 h after trans- 
fection. A control dish was 
mock transfected without 
DNA and harvested at the 
same time. Exponentially 
growing HeLa cells were har- 
vested by trypsinization and 
dissolved in SDS-PAGE lysis 
buffer at a concentration of 5 
x 107 cells/ml. Proteins were 
resolved by SDS-PAGE on 
15% gels, transferred to 
nitrocellulose, and then im- 

munoblotteA with hACA-M at a dilution of 1:1,000. Lane 1 shows 
HeLa cell extract (106 cells); lane 2, a mixture of HeLa cell ex- 
tract (5 x 105 ceils) and pcDL 211-transfected Indian muntjac cell 
extract ('~2.5 x 104 cells); lane 3, pcDL 211-transfected Indian 
muntjac cell extract alone (~5 x 104 cells); lane 4, mock- 
transfected Indian muntjac (,~5 x 104 cells). The 17-kD hACA- 
M-reactive peptide is specifically observed in transfected Indian 
muntjac cell extracts and co-migrates with HeLa cell CENP-A an- 
tigen. 
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Figure 4. Centromeric localization of epitope tagged CENP-A. HeLa cells were transfected with plasmid pcDL CA-HA1 and processed 
for dual-label immunofluorescence 48 h after transfection. Each image includes one or more untransfected cells as a control for staining 
specificity with mAb 12CA5. (A) Detection of epitope-tagged transfected gene product with mAb 12CA5; (B) endogenous centromere 
antigens detected with hACA-M; (C) DAPI staining; and (D) phase contrast. Bar, 10 #m. 

malian cells, cDNA 211 was cloned into pcDL SRa-296, a 
constitutive expression vector based on the SV40 early pro- 
moter (Takabe et al., 1987), to produce plasmid pcDL-211 
and this was introduced into mammalian cells by cationic 
lipid-mediated transfection (Feigner et al., 1987). Trans- 
fected cells were harvested after 48 h by lysis in SDS-PAGE 
sample buffer and protein expression was assayed by western 
blot using hACA-M, a CREST autoantiserum containing an- 
tibodies against human CENP-A (Fig. 3). In preliminary ex- 
periments conditions allowing selective identification of hu- 
man CENP-A expressed in Indian muntjac cells were 
identified (Fig. 3, lane 4). Transfected cells expressed an im- 
munoreactive 17-kD antigen (Fig. 3, lane 3) that co-migrated 
with HeLa CENP-A in SDS-PAGE (Fig. 3, lanes 1 and 2). 
Thus the cDNA 211 encoded protein co-migrates with and 
shares the antigenic properties of bona fide human CENP-A. 

The most distinctive property of CENP-A is its centro- 
meric localization. To examine the intracellular distribution 
of the transfected gene product in human cells, an epitope- 
tagged derivative of CENP-A was prepared. A decapeptide 
coding sequence corresponding to the influenza hemagglu- 
tinin epitope HA-1 (Niman et al., 1983) was introduced after 
the last codon of the cDNA 211 open reading frame using 
PCR. The epitope tagged cDNA was subcloned into pcDL 
to form plasmid pcDL CA-HA1 and was analyzed by tran- 
sient expression in HeLa cells. Cells were transfected on 
cover slips and processed after 48 h for dual-label im- 
munofluorescence microscopy. The transfected gene product 
was detected using HA-1 specific MAb 12CA5 (Fig. 4 A), 

while the location of endogenous centromere antigens was 
determined using hACA-M (Fig. 4 B). In 40-70% of cells 
that expressed transfected CENP-A, the protein was local- 
ized in the nucleus in a number of discrete foci that co- 
localized with centromeres defined by staining with human 
anti-centromere autoantibodies. Since the human serum 
recognizes the transfected gene product as well as endog- 
enous centromere antigens, a parallel cover slip was 
processed for detection using anti-CENP-B monoclonal 
antibody mACA-1 to visualize centromeres. Transfected 
CENP-A co-localized with endogenous CENP-B confirming 
that the cDNA encoded polypeptide was faithfully directed 
to centromeres in human cells (data not shown). We con- 
clude on the basis of sequence homology, molecular size, 
immunochemical reactivity and the centromeric localization 
of the gene product that cDNA 211 encodes a full-length 
copy of human CENP-A. 

The heterogeneity of exogenous gene expression in in- 
dividual cells in transient transfection assays is well docu- 
mented. In these experiments, CENP-A was expressed at 
widely varying levels as judged by total fluorescence signal 
in nuclei of transfected cells. In cells that expressed CENP-A 
at high levels, it was distributed throughout the nucleus in 
interphase cells and was retained on condensed mitotic chro- 
mosomes, suggesting that it is associated with chromatin 
throughout the nucleus (Fig. 5). This was not an artifact of 
the epitope tag as it was also observed with an untagged con- 
struct that expressed native CENP-A (data not shown). It is 
not clear how nucleoplasmic CENP-A is associated with 
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Figure 5. Overexpression of 
CENP-A results in promiscu- 
ous localization throughout 
the chromosomes. HeLa ceils 
were transfected with plasmid 
pcDL CA-HAl and processed 
for immunofluorescence as 
in Fig. 4. Cells that over- 
expressed the transfected 
CENP-A gene product, as 
judged by total fluorescence 
signal and distribution, were 
selected for analysis. A-D 
show interphase cells and 
E-H show a mitotic cell in 
metaphase. (A and E) mAb 
12CA5; (B and F) hACA-M; 
(C and G) DAPI; and (D and 
H) phase contrast. Bar, 
10/~m. 

chromosomes or if it is assembled into nucleosomes. Sur- 
prisingly, cells containing chromosomes uniformly labeled 
with CENP-A appeared to proceed through mitosis normally 
as judged by observation of cells at all stages of mitosis, in- 
cluding metaphase (Fig. 5, E-H), late anaphase and telo- 
phase. Nevertheless, CENP-A is preferentially targeted to 
centromeres when expressed at or near physiological levels. 

The Histone Fold Domain of CENP-A Is Required for 
Centromeric Localization 

CENP-A in vivo is detected solely at centromeres using anti- 
centromere antisera. There remains a formal possibility that 
CENP-A is distributed outside centromeres below the limits 
of detectability of immunocytochemical assays. However, 
the possibility that human anti-centromere autoantibodies 
recognize a distinct centromeric form of CENP-A can be 
eliminated since we have shown that these antibodies detect 
non-centromeric CENP-A in transfected cells (Fig. 5). These 
observations underscore the idea that under normal condi- 
tions a mechanism exists to selectively target CENP-A for 

assembly into centromeres in the presence of a large pool 
of potentially competitive histone H3. These considerations 
prompted us to ask what features of the CENP-A polypeptide 
play a role in the selective assembly of CENP-A at centro- 
meres. 

The information that specifies the centromeric localization 
of CENP-A could reside in the unique NH2 terminus, 
within the histone fold domain or could require the presence 
of both portions of the protein. To test the roles of these two 
regions, a pair of CENP-A/histone H3 chimeras were con- 
structed to examine targeting by transfection in HeLa cells. 
Plasmid pcDL CA/H3-HA1 was constructed by fusion of 
CENP-A NH2-terminal codons 1-51 with codons 52-135 of 
histone H3 (Fig. 6 A). The reciprocal construct, pcDL 
H3/CAoHA1 fused codons 1-52 of histone H3 with the his- 
tone fold domain of CENP-A, residues 53-140. As a control, 
the coding region of mouse histone H3 was cloned into 
pcDL-211 to generate pcDL H3-HA1. These constructs 
maintained the CENP-A 5' and 3' untranslated regions to 
eliminate or minimize effects of mRNA structure or regula- 
tion on the experimental results. Plasmids, including pcDL 
CA-HA1, were introduced into HeLa cells and after 48 h, ex- 
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Figure 6. Chimeric constructs 
used for analysis of CENP-A 
localization requirements. (A) 
Diagram of chimeras con- 
structed for analysis of 
localization signals within 
CENP-A. CENP-A sequences 
are indicated in black while 
histone H3 sequences are in- 
dicated in white. The COOH- 
terminally located HA-1 epi- 
tope is indicated in grey. 
Numbers beneath the dia- 
grams show the amino acid 
residues of CENP-A (CA) or 
histone H3 (H3) present in 
each construct. (B) Expres- 
sion of epitope-tagged pro- 
teins in HeLa cells. Each of 

the plasmids shown in part A was transfected into HeLa cells and cell lysates were prepared after 48 h for immunoblot analysis with mAb 
12CA5. (Lane 1) Mock-transfected cells. Note the presence of endogenous cross-reactive antigens, most notably of 50 and 85 kD. (Lane 
2) CA/HAl; (lane 3) CA/H3-HAI; (lane 4) H3/CA-HA1; 0ane 5) H3-HA1. Epitope-tagged gene products are observed as single bands 
in the range of 19-21 kD. (Lane 6) peDL CA-HA1 transfected into Indian muntjac cells. Positions of molecular weight standards are indi- 
cated at the right. 

pression of epitope-tagged proteins was assayed by immuno- 
blot analysis using mAb 12CA5 (Fig. 6 B). The intracellular 
distribution of the transfected gene products was also assayed 
at this time by immunofluorescence with 12CA5 and hACA-M 
as described, using a confocal laser scanning microscope. 
Epitope-tagged CENP-A-HA1 localized to centromeres as 
described above (Fig. 7 A) while tagged histone H3-HA1 
localized throughout the nucleus as expected for histone H3 
(Fig. 7 D; Kurth et al., 1978). The chimeric CA/H3-HA1, 
possessing the unique NH2 terminus of CENP-A, failed to 
localize at centromeres but rather was distributed throughout 
the nucleus (Fig. 7 B). In contrast, H3/CA-HA1, which pos- 
sesses the COOH-terminal histone-fold domain of CENP-A, 
was localized at centromeres in numerous cells (Fig. 7 C). 
This protein appeared to localize at centromeres with a 
somewhat reduced efficiency or selectivity, evidenced by 
greater levels of general nuclear staining in transfected cells 
than observed with wild type CENP-A-HA1. Nevertheless, 
it is clear that the signals required to target CENP-A to cen- 
tromeres reside within the histone fold domain of CENP-A 
rather than in the unique sequences of the NH2 terminus. 

CENP-A Recognizes a Conserved Element of  the 
Mammalian Centromere 

The identification of a centromere localization signal in the 
histone fold domain of CENP-A, which is highly conserved 
in mammals (Figs. 1 and 2), raised the possibility that 
CENP-A recognizes an evolutionarily conserved element of 
the centromere. To test this hypothesis, pcDL CA-HA1 was 
transfected into Indian muntjac cells and assayed by im- 
munofluorescence microscopy as described for HeLa cells 
above. It is important to note that, while not detected under 
the conditions used for immunoblotting in Fig. 3 (hACA-M 
serum at 1:5,000 dilution), we have detected a homologue of 
CENP-A in the Indian muntjac by Northern blot and by im- 
munoblot analysis using hACA-M at a dilution of 1:100 (data 
not shown). Human CENP-A localized to centromeres of In- 

dian muntjac chromosomes, identified on the basis of num- 
ber, co-localization with endogenous centromere antigens 
and the characteristic G2/M phase morphology of muntjac 
centromeres (Fig. 8, A and B). Chimera H3/CA-HA1 also 
localized to muntjac centromeres, indicating that the con- 
served targeting element resides within the histone fold do- 
main of CENP-A. Thus, the histone fold domain of CENP-A 
recognizes a conserved component of centromere structure 
or assembly in mammalian cells. 

CENP-B, the Sequence-specific Satellite 
DNA Binding Protein of the Centromere, Does Not 
Specify Localization o f CENP.A 

One plausible mechanism for the centromeric localization of 
CENP-A is that it is mediated by protein-protein interactions 
with another centromere component. A candidate for such 
a targeting protein is CENP-B, which is localized to the cen- 
tromere by virtue of a sequence-specific centromere DNA 
binding activity (Masumoto et al., 1987; Pluta et al., 1992). 
In preliminary experiments, we noticed that human CENP-B 
expressed in the Indian muntjac does not preferentially local- 
ize at centromeres (Fig. 9 C). This observation allowed us 
to test the hypothesis that CENP-B plays a role in targeting 
of CENP-A. 

Human CENP-A and CENP-B were simultaneously intro- 
duced into Indian muntjac cells by co-transfection and their 
localizations were independently determined by dual-label 
immunofluorescence microscopy. In these experiments, epi- 
tope tagged CENP-A-HA! was detected with antibody 
12CA5 while human CENP-B, was detected with monoclonal 
antibody mACA-1 (Earnshaw et al., 1987). This antibody is 
specific for human CENP-B, allowing unambiguous iden- 
tification of human CENP-B expressed in transfected Indian 
muntjac cells. CENP-B localized to numerous discrete foci 
within the nucleus, in large excess of the number of centro- 
meres, presumably by binding to cryptic recognition sites 
distributed throughout the muntjac genome (Fig. 9 C). In 
contrast, CENP-A-HA1 in these same cells was restricted to 
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Figure Z The histone fold domain of CENP-A is required for centromere localization. Plasmids were introduced into HeLa cells as de- 
scribed and processed for dual-label immunofluorescence with MAb 12CA5 (left) or hACA-M (right) using a Bio Pad MRC 600 confocal 
laser scanning microscope. To evaluate co-distribution of epitope-tagged gene products with endogenous centromere antigens, the fluores- 
cein (12CA5) and rhodamine (hACA-M) signals were merged using the MERGE feature of the MRC 600 COMOS software package, shown 
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Figure 8. Human CENP-A is faithfully targeted to centromeres of the Indian muntjac. Indian muntjac cells were transfected with pcDL 
CA-HA1 and processed for immunofluorescence using the confocal microscope as described in Fig. 7. A-C show a field of interphase cells. 
(A) mAb 12CA5; (B) merged signals mAbl2CA5 + hACA-M; and (C) hACA-M superimposed on differential interference contrast image. 
A G2 or early prophase cell is shown in D and E, revealing the characteristic double dot staining of duplicated centromeres; arrowheads 
indicate the large centromere of the muntjac X chromosome. (D) mAb 12CA5; and (E) hACA-M. Bar, 10 #m. 

Figure 9. CENP-B alone is insufficient to specify the localization of CENP-A. Indian muntjac cells were cotransfected with pcDL CA-HA1 
and pcDL CB, expressing human CENP-B. Distribution of antigens was assayed by dual label immunofluorescence microscopy using the 
confocal microscope as described in Fig. 7. (A) CENP-A-HAI localization; (B) human CENP-B localization; (C) enlarged merge of A 
and B. Bars, 10 #m. 

in the center panel. In this analysis, co-distributed antigens are visualized as yellow. A differential interference contrast image is shown 
superimposed on the hACA-M fluorescence signal in the upper right panel, showing that the antibody signals are restricted to nuclei. Each 
image includes one or more untransfected ceils as a control for staining specificity with mAb 12CA5. (.4) pcDL CA-HA1; (B) pcDL 
CA/H3-HAI; (C) pcDL H3/CA-HA1; and (D) pcDL H3-HA1. Bar, 10/zm. 
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centromeres as shown previously (Fig. 9 A). Some of the 
CENP-B-containing foci partially overlapped with centro- 
meres as defined by CENP-A-HA1, but some centromeres 
were unlabeled with human CENP-B (Fig. 9 B). CENP-A 
was clearly absent from the majority of CENP-B-contain- 
ing foci in co-transfected cells. Thus, the localization of 
CENP-A cannot be specified (solely) by an interaction with 
CENP-B, but rather must depend on other structural features 
within the centromere. 

Discussion 

CENP-A Is a Centromere-specific Core Histone 

Human CENP-A was originally identified as a 17-kD 
centromere-associated CREST antigen present on human 
chromosomes (Earnshaw and Rothfield, 1985). The possi- 
bility that one of the CREST antigens might resemble his- 
tone proteins was first raised by Palmer and Margolis and 
their co-workers, who showed that CENP-A was present on 
nucleosome like particles and co-fractionated with histones 
during biochemical purification of histones from nucleo- 
some core particles (Palmer and Margolis, 1985; Palmer et 
al., 1987). This idea was supported by direct peptide se- 
quence analysis of bovine CENP-A, revealing amino acid se- 
quence similarity between CENP-A and histone H3 (Palmer 
et al., 1991). In this work we have isolated a full-length 
eDNA for human CENP-A, allowing the first complete se- 
quence analysis of the protein. These data, coupled with 
functional expression of CENP-A in mammalian cells dem- 
onstrate that, indeed, CENP-A is a centromere-specific 
homologue of the core nucleosomal protein histone H3. 

Nucleosome structure and the core histone proteins have 
been generally thought to be highly conserved. The diver- 
gence of histone H3 over the entire phylogenetic spectrum 
does not exceed 10% and within a single species variation 
among different histone H3 genes is restricted to just a few 
amino acid positions (Wells and McBride, 1989). Until re- 
cently, the existence of divergent homologues of the core his- 
tone proteins was unexpected. The identification of macro- 
H2A (mH2A), a liver nucleosomal protein that possesses a 
histone H2A domain coupled to a large nonhistone region, 
provides the only other example of a divergent core nucleo- 
somal protein identified at the biochemical level (Pehrson 
and Fried, 1992). However, the characterization of CENP-A 
and mH2A, coupled with the discovery of genes encoding 
histone H3-1ike proteins by large scale DNA sequence analy- 
sis in Caenorhabditis elegans (Wilson et al., 1994), clearly 
indicates that modification of chromatin through incorpora- 
tion of divergent core histones may be an important theme 
for chromosome structure. 

Structure of CENP-A and Histone Function 

The organization of CENP-A parallels that of histone H3. 
Histone H3, like the other core histones, possesses two do- 
mains: a flexible and highly basic NH2-terminal tail that is 
dispensable for nucleosome assembly (Allen et al., 1982) 
and viability in yeast (Mann and Grunstein, 1992), and a 
globular COOH-terminal domain that assembles with his- 
tone H4 to form the proteinaceous core of the nucleosome 
(Arents et al., 1991; Richmond et al., 1984). The NH2 ter- 

minus of CENP-A, residues 1-47, shares the basic and flexi- 
ble nature of the histone tail but no amino acid sequence 
similarity with histone H3. 

The COOH-terminal portion of histone H3 is folded into 
an extended dumbbell-shaped structure termed the histone 
fold domain that typifies all four core histones (Arents et al., 
1991). The homology between CENP-A and histone H3 be- 
gins abruptly at the border between the NH2-terminal do- 
main and this histone fold domain. The histone fold domain 
of human CENP-A is 62 % identical to that of human histone 
H3. Since the available biochemical data demonstrate that 
CENP-A is found in association with histone H4 and the 
other core histones in particles that co-purify with nucleo- 
some core particles, it is reasonable to assume that CENP-A 
acts as a histone H3 homologue replacing one or both copies 
of histone H3 in a certain set of centromeric nucleosomes. 

The major function of the core histones is to bind to DNA, 
folding it across the nucleosome surface. In particular, nu- 
cleosomal DNA makes several contacts with histone H3 in 
its path across the surface of the histone octamer (Mir- 
zabekov et al., 1978; Arents and Moudrianakis, 1993). How 
is the CENP-A histone H3 domain expected to impact the 
structure of the nucleosome? The high degree of sequence 
identity shared between CENP-A and histone H3 would sug- 
gest that CENP-A nucleosomes are very similar to normal 
nucleosome. CENP-A sequences that correspond to the posi- 
tions where DNA enters and exits the nucleosome are highly 
conserved relative to histone H3. However, CENP-A is 
diverged from a conserved region of histone H3 that is found 
near the nucleosome twofold axis, around residue 110 
(Camerini-Otero and Felsenfeld, 1979). The positioning of 
nucleosomes on DNA in vitro is facilitated by placing intrin- 
sically bent or flexible DNA near the dyad axis of the nucleo- 
some (Constanzo et al., 1990; Schrader and Crothers, 
1990). Thus, CENP-A is differentiated from histone H3 in 
a region that may be involved in nucleosome/DNA recogni- 
tion. Whether CENP-A can impart selectivity for centro- 
meric DNA sequence or structure to nucleosomes remains 
to be experimentally determined, but the results presented 
here demonstrate a role for CENP-A in recognition of the 
centromere. 

Targeting of CENP-A Is Dependent on the Histone 
Fold Domain 

CENP-A is normally detected only at centromeres. To local- 
ize the structural determinants of CENP-A that are involved 
in centromeric targeting, we constructed chimeric molecules 
comprised of CENP-A and histone H3. The natural division 
of CENP-A and histone H3 into two domains allowed us to 
test the two segments of the protein while maintaining the 
overall structural organization of the resultant chimeras. Our 
initial hypothesis was that the unique NH2 terminus of 
CENP-A would be required for centromere localization 
while the histone fold domain would provide the structure 
necessary for nucleosomal assembly. Surprisingly, the NH2 
terminus was incapable of selectively directing the histone 
fold domain of histone H3 to the centromeres. Rather, the 
COOH-terminal histone fold domain of CENP-A is itself 
sufficient for selective assembly at centromeres. 

Recognition of the centromere must, at some level, be 
based on DNA sequence recognition. One possibility is that 
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CENP-A does not recognize centromeric DNA itself, but 
that it is guided to centromeres indirectly by interaction with 
a protein that directly recognizes and binds to centromeric 
DNA sequences. The possibility that CENP-B mediates the 
localization of CENP-A to centromeres was tested by co- 
transfection of the human genes into a heterologous cell type 
in which CENP-A is faithfully localized to centromeres 
while CENP-B is promiscuously localized to noncentro- 
meric nuclear assembly sites. In this experiment, co-expres- 
sion of CENP-B did not affect the centromeric localization 
of CENP-A. This result rules out the simple hypothesis that 
CENP-A is directed to centromeres by binding to CENP-B. 
CENP-A localization is either independent of CENP-B or re- 
quires additional molecular recognition events. The fact that 
the histone fold domain of CENP-A is sufficient for centro- 
meric localization suggest that CENP-A may directly recog- 
nize centromeric DNA sequence or structure. 

Why Does the Centromere Use a Different 
Core Histone? 

The unique structure of CENP-A reported here coupled with 
previous biochemical studies (Palmer et al., 1987) indicate 
that the centromere is differentiated from the chromosome 
arms at the most fundamental level of chromatin structure, 
the nucleosome. Modified nucleosomes are unlikely to be 
necessary for the actual assembly of microtubule-dependent 
motor proteins onto the chromosome, since these interac- 
tions can be reconstituted in vitro using naked DNA (Mid- 
dleton and Carbon, 1994; Hyman et al., 1992). Neverthe- 
less, the differentiation of centromeric nucleosomes may be 
required for centromere function: recently a yeast gene re- 
quired for chromosome segregation has been identified that, 
like CENP-A, is a highly diverged histone H3 homologue 
(Stoler, S., and M. Fitzgerald-Hayes, personal communica- 
tion). The specific configuration of chromatin at the centro- 
mere could be important for insulating the centromere from 
transcriptional activity or provide a necessary component 
of the sister chromatid pairing mechanism. Alternatively, 
CENP-A could provide a mechanical function within the 
centromere. Mitotic motors can exert force in vast excess of 
that required for chromosome movement (Nicklas, 1988). 
One possible role of differentiated centromeric chromatin 
could be to provide the chromatin fiber with the mechanical 
stability necessary to integrate forces generated at the ki- 
netochore with the chromosome scaffold, to effectively 
transduce force generated locally at the surface of the chro- 
mosome to the global chromosome movements of mitosis. 
The recent demonstration that tension at the kinetochore 
plays a signalling role in modulating microtubule stability 
and motor protein directionality further underscores the im- 
portance of the mechanical properties of the centromere at 
the level of regulation of chromosome movement and spindle 
function (Skibbens et al., 1993; Ault and Nicklas, 1989). 
The identification of CENP-A as a unique centromeric his- 
tone will facilitate experimental analysis of the role of chro- 
matin structure in the assembly and function of the cen- 
tromere. 
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